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Abstract 
 
Batch implementations of Support Vector Regression (SVR) are inefficient when used in 

an online setting, because they must be retrained from scratch every time the training set 

is modified. Following an incremental support vector classification algorithm introduced 

by Cauwenberghs & Poggio (2001), we developed an Accurate Online Support Vector 

Regression (AOSVR) which efficiently updates a trained SVR function whenever a 

sample is added to or removed from the training set. The updated SVR function is 

identical to that produced by a batch algorithm. Applications of AOSVR both in online 

and in cross-validation scenarios are presented. In both scenarios, numerical experiments 

indicate that AOSVR is faster than batch SVR algorithms with both cold and warm start. 

 Keywords: Support Vector Regression; Online Time-series Prediction; Leave-one-out 

Cross-validation; Quadratic Programming; Warm Start. 

 
1. Introduction 
 

Support Vector Regression (SVR) fits a continuous-valued function to data in a way 

that shares many of the advantages of support vector machine (SVM) classification. Most 

algorithms for SVR (Smola & Schölkopf, 1998; Chang & Lin, 2002) require that training 

samples be delivered in a single batch. For applications such as online time-series 

prediction or leave-one-out cross-validation, a new model is desired each time a new 



 
sample is added to (or removed from) the training set. Retraining from scratch for each 

new data point can be very expensive. Approximate online training algorithms have 

previously been proposed for SVMs (Syed et al.,1999; Csato & Opper, 2001; Gentile, 

2001; Graepel et al., 2001; Herbster, 2001; Li & Long, 1999; Kivinen et al., 2002; 

Ralaivola & d’Alche-Buc, 2001). We propose an accurate online support vector 

regression (AOSVR) algorithm that follows the approach of Cauwenberghs & Poggio 

(2001) for incremental SVM classification. 

This paper is organized as follows. The formulation of the SVR problem, and the 

development of the Karush-Kuhn-Tucker (KKT) conditions that its solution must satisfy, 

are presented in Section 2. The incremental SVR algorithm is derived in Section 3, and a 

decremental version is described in Section 4. Two applications of the AOSVR algorithm 

are presented in Section 5, along with a comparison to batch algorithms using both cold 

start and warm start.  

 

2. Support Vector Regression and the Karush-Kuhn-Tucker conditions 
 
A more detailed version of the following presentation of SVR theory can be found in 

Smola & Schölkopf (1998). 

Given a training set {( , ), 1... }i iT y i l= =x , where N
i ∈x R , and iy ∈R , we construct a 

linear regression function 

 ( ) ( )Tf b= Φ +x W x                                                                                                (1) 

on a feature space F.  Here, W is a vector in F, and ( )Φ x  maps the input x to a vector in 

F. The W  and b in (1) are obtained by solving an optimization problem: 
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The optimization criterion penalizes data points whose y-values differ from f (x) by more 

than ε. The slack variables, ξ and ξ *, correspond to the size of this excess deviation for 

positive and negative deviations, respectively, as shown in Figure 1. 

 

Figure 1. The ε -insensitive loss function and the role of the slack variables ξ and ξ * 
 
Introducing Lagrange multipliers α, α*, η and η*, we can write the corresponding 

Lagrangian as: 
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This in turn leads to the dual optimization problem: 
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where ( ) ( ) ( , )T

ij i j i jQ K= Φ Φ =x x x x . Here ( , )i jK x x  is a kernel function (Smola & 

Schölkopf 1998). Given the solution of (3), the regression function (1) can be written: 

 *

1

( ) ( ) ( , )
l

i i i
i

f K bα α
=

= − +∑x x x                                                                              (4) 

The Lagrange formulation of (3) can be represented as: 
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where (*)
iδ , (*)

iu , and ζ are the Lagrange multipliers.  Optimizing this Lagrangian leads to 

the Karush-Kuhn-Tucker (KKT) conditions: 
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Note that ζ  in (6) is equal to b  in (1) and (4) at optimality (Chang & Lin, 2002). 

According to the KKT conditions (6), at most one of iα  and *
iα  will be nonzero, and 

both are nonnegative. Therefore, we can define a coefficient difference iθ  as  

   *
iii ααθ −=                                                                                                         (7) 

and note that iθ  determines both iα  and *
iα .  

Define a margin function ( )ih x  for the ith sample ix  as: 

1

( ) ( )
l

i i i ij j i
j

h x f x y Q y bθ
=

≡ − = − +∑ .                                                                     (8) 

Combining (6), (7), and (8), we can obtain: 
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There are five conditions in Equation (9), compared to the three conditions in 

support vector classification (see Equation (2) in Cauwenberghs & Poggio (2001)), but 

like the conditions in support vector classification, they can be identified with three 

subsets into which the samples in training set T can be classified. The difference is that 

two of the subsets (E and S) are themselves composed of two disconnected components, 

depending on the sign of the error ii yxf −)( . 

The E Set: Error Support Vectors: { | }iE i Cθ= =                                                   (10) 

The S Set: Margin Support Vectors: { | 0 }iS i Cθ= < <                                           (11) 

The R Set: Remaining Samples: { | 0}iR i θ= =                                                         (12) 

 
3. Incremental Algorithm 
 

The incremental algorithm updates the trained SVR function whenever a new sample 

cx  is added to the training set T.  The basic idea is to change the coefficient 

cθ corresponding to the new sample cx  in a finite number of discrete steps until it meets 

the KKT conditions, while ensuring that the existing samples in T continue to satisfy the 

KKT conditions at each step. In this section, we first derive the relation between the 

change of cθ , or cθ∆ , and the change of other coefficients under the KKT conditions, 

and then propose a method to determine the largest allowed cθ∆  for each step. A pseudo-

code description of this algorithm is provided in the Appendix.  



 
3.1 Derivation of the Incremental Relations 
 

Let cx  be a new training sample that is added to T. We initially set 0cθ =  and then 

gradually change (increase or decrease) the value of cθ  under the KKT conditions (9).  

According to (6), (7), and (9), the incremental relation between ( )ih∆ x , iθ∆ , and b∆  

is given by: 
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Combining (9), (10), (11), (12), (13), and (14), we obtain: 
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If we define the index of the samples in the S set as: 

 1 2{ , , }
sl

S s s s= �                                                                                                   (16) 

Equation (15) can be represented in matrix form as: 
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That is,  
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Define a non-S, or N set, as 1 2{ , , }
nl

N E R n n n= ∪ = � . Combining (9), (10), (11), 

(12), (13), and (18), we obtain 
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where, 
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In special case when S set is empty, according to (13) and (14), Equation (20) simplifies 

to ( )nh b∆ = ∆x , for all n E R∈ ∪ .                                                                                            

Given cθ∆ , we can update ,i i Sθ ∈  and b according to (18), and update ( ),ih i N∈x  

according to (20). Moreover, (9) suggests that ,i i Nθ ∈  and ( ),ih i S∈x  are constant if 

the S set stays unchanged. Therefore, the results presented in this section enable us to 

update all the iθ  and ( )ih x  given cθ∆ .  In the next section, we address the question of 

how to find an appropriate cθ∆ .  

3.2. AOSVR Bookkeeping Procedure  
 



 
Equations (18) and (20) hold only when the samples in the S set do not change 

membership. Therefore, cθ∆  is chosen to be the largest value that either can maintain the 

S set unchanged or lead to the termination of the incremental algorithm.  

The first step is to determine whether the change cθ∆  should be positive or negative.  

According to (9), 

 ( ) ( ( )) ( ( ))c c c csign sign y f sign hθ∆ = − = −x x                                                           (22) 

The next step is to determine a bound on cθ∆  imposed by each sample in the training 

set. To simplify exposition we only consider the case 0cθ∆ > , and remark that the case 

0cθ∆ <  is similar. 

For the new sample cx , there are two cases: 

Case 1: ( )ch x  changes from ( )ch ε< −x  to ( )ch ε= −x , and the new sample cx  is 

added to the S set, and the algorithm terminates. 

Case 2: If cθ  increases from c Cθ <  to c Cθ = , the new sample cx  is added to the 

E set, and the algorithm terminates.  

For each sample ix  in the set S,  

Case 3: If iθ changes from 0 i Cθ< <  to i Cθ = , sample ix  changes from the S 

set to the E set; If iθ changes to 0iθ = , sample ix  changes from the S set to the R 

set. 

For each sample ix  in the set E, 

Case 4: If ( )ih x changes from ( )ih ε>x  to ( )ih ε=x , ix  is moved from the E 

set to the S set. 

For each sample ix  in the set R, 



 
Case 5: If ( )ih x changes from ( )ih ε<x  to ( )ih ε=x , ix  is moved from the R 

set to the S set. 

The bookkeeping procedure is to trace each sample in the training set T against these 

five cases, and determine the allowed cθ∆  for each sample according to (18) or (20). The 

final cθ∆  is defined as the one with minimum absolute value among all the possible cθ∆ . 

 
3.3. Efficiently Updating R Matrix  
 

The matrix R that is used in (19) 
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must be updated whenever the S set is changed. Following Cauwenberghs & Poggio 

(2001), we can efficiently update R without explicitly computing the matrix inverse. 

When the kth sample 
ksx  in the S set is removed from the S set, the new R can be 

obtained as follows: 

 , ,
,

,
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k kR
= − I I
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sl
k k S= + +I � �                      (24) 

When a new sample is added to S set, the new R can be updated as follows: 
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where β  is defined as 
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when the sample ix  was moved from E set or R set. In contrast, when the sample cx  is 

the sample added to S set, β  is can be obtained according to (19), and iγ  is the last 

element of γ defined in (21). 
 
3.4. Initialization of the Incremental Algorithm 
 

An initial SVR solution can be obtained from a batch SVR solution, and in most cases 

that is the most efficient approach.  But it is sometimes convenient to use AOSVR to 

produce a full solution from scratch. An efficient starting point is the two-sample 

solution. Given a training set 1 1 2 2{( , ), ( , )}T y y= x x , with 1 2y y≥ , the solution of (3) is 

 

1 2
1

11 12
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1 2

2
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C

K K

b y y

εθ

θ θ
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                                                                       (26) 

The sets E, S, and R are initialized from these two points based on (10), (11), and 

(12).  If the set S is nonempty, the matrix R can be initialized from (23); as long as S is 

empty, the matrix R will not be used. 

 
4. Decremental Algorithm 
 

The decremental (or “unlearning”) algorithm is employed when an existing sample is 

removed from the training set. If a sample cx  is in the R set, then it does not contribute to 

the SVR solution, and removing it from the training set is trivial; no adjustments are 

needed.  If on the other hand, cx  has a nonzero coefficient, then the idea is to gradually 

reduce the value of the coefficient to zero, while ensuring all the other samples in training 

set continue to satisfy the KKT conditions.  



 
The decremental algorithm follows the incremental algorithm with a few small 

adjustments: 

(i) The direction of the change of cθ is: 

( ) ( ( ) ) ( ( ))c c c csign sign f y sign hθ∆ = − =x x .                                                       (27) 

(ii) There is no Case 1 because the removed cx need not satisfy KKT conditions.  

(iii) The condition in Case 2 becomes: cθ  changing from 0cθ >  to 0cθ = . 

 
5. Applications and Comparison with Batch Algorithms 
 

The accurate online SVR (AOSVR) learning algorithm produces exactly the same 

SVR as the conventional batch SVR learning algorithm, and can be applied in all 

scenarios where batch SVR is currently employed. But for online time-series prediction 

and leave-one-out cross-validation (LOOCV), the AOSVR algorithm is particularly well 

suited. In this section, we demonstrate AOSVR for both of these applications, and 

compare its performance to existing batch SVR algorithms.  These comparisons are based 

on direct timing of runs using Matlab implementations; we remind the reader that such 

timings should be treated with some caution, as they can be sensitive to details of 

implementation. 

5.1. AOSVR vs. Batch SVR Algorithms with Warm Start 
 

Most batch algorithms for SVR are implemented as “cold-start.” This is appropriate 

when a fit is desired to a batch of data that has not been seen before. However, in recent 

years there has been a growing interest in “warm-start” algorithms that can save time by 

starting from an appropriate solution, and quite a few papers addressed this issue in the 

generic context of numeric programming (Gondzio, 1998; Gondzio & Grothey, 2001; 

Yildirim & Wright, 2002; Fliege & Heseler, 2002). The warm-start algorithms are useful 



 
for incremental (or decremental) learning, because the solution with N-1 (or N+1) data 

points provides a natural starting point for finding the solution with N data points. In this 

sense, AOSVR is a kind of warm start algorithm for the QP problem (3), that is specially 

designed for the incremental/decremental scenario. This specialty allows AOSVR to 

achieve more efficiency when handling SVR incremental/decremental learning, as 

demonstrated in our subsequent experiments.  

In the machine learning community, three algorithms for batch SVR training are 

widely recognized. (a) Gunn (1998) solved SVR training as a generic QP optimization; 

we call this implementation QPSVMR. (b) Shevade et al. (1999) proposed an algorithm 

specially designed for SVR training, and it is an improved version of the sequential 

minimal optimization for SVM regression (SMOR). (c) Chang & Lin (2001) proposed 

another algorithm specially designed for SVR training, which we call LibSVMR since it 

is implemented as part of the LibSVM software package. We implemented all these 

algorithms so that they can run in both a cold-start and a warm-start mode. SMOR and 

LibSVMR are implemented in Matlab, and both algorithms allow a straightforward 

warm-start realization. Because QPSVMR is based on a generic QP algorithm, it is much 

less efficient than SMOR or LibSVMR.  To make our subsequent experiments feasible, 

we had to implement the QPSVMR core in C (Smola, 1998). Smola (1998) essentially 

employs the interior point QP code of LOQO (Vanderbei, 1999). The warm start of 

QPSVMR directly adopts the warm-start method embedded in Smola’s implementation 

(Smola, 1998). 

 

5.2. Online Time-series Prediction 
 



 
In recent years, the use of SVR for time-series prediction has attracted increased 

attention (Müller et al., 1997; Fernández, 1999; Tay & Cao, 2001). In an online scenario, 

one updates a model from incoming data and at the same time makes predictions based 

on that model. This arises, for instance, in market forecasting scenarios. Another potential 

application is the (near) real-time prediction of electron density around a satellite in the 

magnetosphere; high charge densities can damage satellite equipment (Friedel et al., 

2002), and if times of high charge can be predicted ahead of time, the most sensitive 

components can be turned off before they are damaged.  

In time-series prediction, the prediction origin, denoted O, is the time from which the 

prediction is generated. The time between the prediction origin and the predicted data 

point is the prediction horizon, which for simplicity we will take as one time step.  

A typical online time-series prediction scenario can be represented as follows 

(Tashman, 2000):  

(1) Given a time series { ( ), 1, 2,3 }x t t = �  and prediction origin O, construct a 

set of training samples, ,O BA , from the segment of time series 

{ ( ), 1 }x t t O= � as , {( ( ), ( )), 1}O B t y t t B O= = −A X � , where 

[ ]( ) ( ) ( 1)
T

t x t x t B= − +X � , ( ) ( 1)y t x t= + , and B is the embedding 

dimension of the training set ,O BA . 

(2) Train a predictor ,( ; )O BP A X from the training set ,O BA . 

(3) Predict ( 1)x O +  using ,ˆ( 1) ( ; ( ))O Bx O P O+ = A X . 

(4) When ( 1)x O +  becomes available, update the prediction origin: 1O O= + . 

Then, go to (1) and repeat the above procedure. 



 
Note that the training set ,O BA  keeps growing as O increases, so the training of the 

predictor in step (2) becomes increasingly expensive.  Therefore, many SVR-based time-

series predictions are implemented in a compromised way (Tay & Cao, 2001). After the 

predictor is obtained, it stays fixed, and is not updated as new data arrives. In contrast, an 

online prediction algorithm can take advantage of the fact that the training set is 

augmented one sample at a time, and continues to update and improve the model as more 

data arrives. 

 
5.2.1. Experiments 
 

Two experiments were performed to compare the AOSVR algorithm with the batch 

SVR algorithm. We are careful to use the same algorithm parameters for online and batch 

SVR, but since our purpose is to compare computational performance, we did not attempt 

to optimize these parameters for each data set. In these experiments, the kernel function is 

a Gaussian radial basis function, 
2

exp( )i jγ− −X X , where 1γ = ; the regularization 

coefficient C and the insensitivity parameter ε in (2) are set to 10 and 0.1 respectively; 

the embedding dimension, B, of the training ,O BA , is 5. Also, we scale all the time-series 

to [-1,1]. 

Three widely used benchmark time-series are employed in both experiments: (a) the 

Santa Fe Institute Competition time series A (Weigend & Gershenfeld, 1994), (b) the 

Mackey-Glass equation with τ=17 (Mackey & Glass, 1977), and (c) the yearly average 

sunspot numbers recorded from 1700 to 1995. Some basic information about these time-

series is listed in Table 1.  The SV Ratio is the number of support vectors divided by the 

number of training samples.  This is based on a prediction of the last data point using all 



 
previous data for training.  In general, a higher SV ratio suggests that the underlying 

problem is harder (Vapnik, 1998).  

 
 

 # Data Points SV Ratio 
Santa Fe Institute 1000 4.52% 
Mackey-Glass 1500 1.54% 
Yearly Sunspot 292 41.81% 

Table 1. Information Regarding Experimental Time Series 

The first experiment demonstrates that using a fixed predictor produces less accurate 

predictions than using a predictor that is updated as new data becomes available. Two 

measurements are used to quantify the prediction performance: mean squared error 

(MSE), and mean absolute error (MAE). The predictors are initially trained on the first 

half of the data in the time-series. In the fixed case, the same predictor is used to predict 

the second half of the time-series. In the online case, the predictor is updated whenever a 

new data point is available. The performance measurements for both cases are calculated 

from the predicted and actual values of the second half of the data in the time-series. As 

shown in Table 2, the online predictor outperforms the fixed predictor in every case. We 

also note that the errors for the three time-series in Table 2 coincide with the estimated 

prediction difficulty in Table 1 based on SV Ratio. 

  Online Fixed 
MSE  0.0072 0.0097 Santa Fe 

Institute MAE  0.0588 0.0665 
MSE  0.0034 0.0036 Mackey-

Glass MAE  0.0506 0.0522 
MSE  0.0263 0.0369 Yearly 

Sunspot MAE  0.1204 0.1365 
Table 2. Performance Comparison For Online and Fixed Predictors 

The second experiment compares AOSVR with batch implementations using both 

cold-start and warm-start in the online prediction scenario. For each benchmark time-

series, an initial SVR predictor is trained on the first two data points using the batch SVR 



 
algorithms. For AOSVR, we used Equation (26). Afterwards, both AOSVR and batch 

SVR algorithms are employed in the online prediction mode for the remaining data points 

in the time-series. AOSVR and the batch SVR algorithms produce exactly the same 

prediction errors in this experiment, so the comparison is only of prediction speed. All six 

batch SVR algorithms are compared with AOSVR on the sunspot time-series, and the 

experimental results are plotted in Figure 2. The x-axis of this plot is the number of data 

points to which the online prediction model is applied. Note that the core of QPSVMR is 

implemented in C. Because the cold-start and warm-start of LibSVMR clearly 

outperform those of both SMOR and QPSVMR, only the comparison between LibSVMR 

and AOSVR is carried out in our subsequent experiments. The experimental results of 

both Santa Fe Institute and Mackey-Glass time-series are presented in Figures 3, and 4 

respectively.  

 
 

Figure 2. Real-time prediction time of yearly sunspot time series 

 



 

 

Figure 3. Real-time prediction time of Santa Fe Institute time series 

 

Figure 4. Real-time prediction time of Mackey-Glass time series  

These experimental results demonstrate that AOSVR algorithm is generally much 

faster than the batch SVR algorithms when applied to online prediction. Comparison of 

Figures 2 and 4 furthermore suggests that more speed improvement is achieved on the 

sunspot data than on the Mackey-Glass. We speculate that this is because the sunspot 



 
problem is “harder” than the Mackey-Glass – it has a higher support vector ratio – and 

that the performance of the AOSVR algorithm is less sensitive to problem difficulty. 

To test this hypothesis, we compared the performance of AOSVR to LibSVMR on a 

single dataset (the sunspots) whose difficulty was adjusted by changing the value of ε. A 

smaller ε leads to a higher support vector ratio and a more difficult problem. Both the 

AOSVR and LibSVMR algorithms were employed for online prediction of the full time-

series. The overall prediction times are plotted against ε in Figure 5.  Where AOSVR 

performance varied by a factor of less than ten over the range of ε, the LibSVMR 

performance varied by a factor of about 100. 

 

 
Figure 5. Semi-log and linear plots of prediction time of yearly sunspot time series 

 
 
5.2.2. Limited-Memory Version of the Online Time-series Prediction Scenario 
 



 
One problem with online time-series prediction in general is the longer the prediction 

goes on, the bigger the training set ,O BA  will become, and the more SVs will be involved 

in SVR predictor. A complicated SVR predictor imposes both memory and computation 

stress on the prediction system. One way to deal with this problem is to impose a 

“forgetting” time W. When training set ,O BA  grows to this maximum W, then the 

decremental algorithm is used to remove the oldest sample before the next new sample is 

added to the training set. 

We note that this variant of the online prediction scenario is also potentially suitable 

for non-stationary time-series, as it can be updated in real-time to fit the most recent 

behavior of the time-series. More rigorous investigation in this direction will be a future 

effort. 

5.3. Leave-One-Out Cross-validation 
 

Cross-validation is a useful tool for assessing the generalization ability of a machine-

learning algorithm. The idea is to train on one subset of the data, and then to test the 

accuracy of the predictor on a separate disjoint subset.  In leave-one-out cross-validation  

(LOOCV), only a single sample is used for testing, and all the rest are used for training.  

Generally, this is repeated for every sample in the dataset. When the batch SVR is 

employed, LOOCV can be very expensive, since a full retraining is done for each sample. 

One compromise approach is to estimate LOOCV with related but less expensive 

approximations, such as the Xi-Alpha Bound (Joachims, 2000), and Approximate Span 

Bound (Vapnik & Chapelle, 1999). Although Lee & Lin (2001) proposed a numerical 

solution to reduce the computation for directly implementing LOOCV, the amount of 

computation required is still considerable. Also, the accuracy of the LOOCV result 



 
obtained using this method can be potentially compromised because a different parameter 

set is employed in LOOCV and in the final training.  

The decremental algorithm of AOSVR provides an efficient implementation of 

LOOCV for SVR:  

(1) Given a dataset D, construct the SVR function f(x) from the whole dataset D 

using batch SVR learning algorithm; 

(2) For each non-support vector xi in the dataset D, calculate error ei corresponding 

to xi as: ei = yi-f (xi), where yi is the target value corresponding to xi;  

(3) For each support vector xi involved in the SVR function f(x),  

a. Unlearn xi from the SVR function f(x) using the decremental algorithm to 

obtain the SVR function fi(x) which would be constructed from the dataset 

Di=D/{xi}; 

b. Calculate error ei corresponding to support vector xi as: ei = yi-fi(xi), where yi 

is the target value corresponding to xi.  

(4) Knowing the error for each sample xi in D, it is possible to construct a variety of 

overall measures; a simple choice is the MSE:  

21
( )

N

LOOCV i
i

MSE e
N

= ∑D                                                                                 (28) 

where N is number of samples in dataset D. Other choices of error metric, such 

as MAE, can be obtained just by altering (28) appropriately. 

5.3.1. Experiment 
 

The algorithm parameters in this experiment are set the same as those in the 

experiments in Subsection 5.1.1. Two famous regression datasets, the auto-mpg and 

Boston housing datasets, are chosen from the UCI machine-learning repository. Some 

basic information of these datasets is listed in Table 3. 



 
 

 # Attributes # Samples SV Ratio 
Auto-MPG 7 392 41.07% 

Boston Housing 13 506 36.36% 
Table 3. Information Regarding Experimental Regression Datasets 

The experimental results of both datasets are presented in Figure 6. The x-axis is the 

size of the training set, upon which the LOOCV is implemented. These plots show that 

AOSVR-based LOOCV is much faster than its LibSVMR counterpart. 

 
 

Figure 6.  Semi-log plots of LOOCV time of Auto-MPG and Boston Housing dataset 

 
6. Conclusions 

 
We have developed and implemented an accurate online support vector regression 

(AOSVR) algorithm that permits efficient retraining when a new sample is added to, or 

when an existing sample is removed from, the training set. AOSVR is applied to online 



 
time-series prediction and to leave-one-out cross-validation, and the experimental results 

demonstrate that the AOSVR algorithm is more efficient than conventional batch SVR in 

these scenarios. Moreover, AOSVR appears less sensitive than batch SVR to the 

difficulty of the underlying problem.  

After this manuscript was prepared, we were made aware of a similar online SVR 

algorithm, which was independently presented in Martin (2002).  

Appendix 
 
Pseudo-code for Incrementing AOSVR with a New Data Sample  
 
Inputs:  

� Training set {( , ), 1... }i iT y i l= =x  

� Coefficients { , 1... }i i lθ = , and bias b 

� Partition of samples into sets S, E, and R 

� Matrix R defined in (23)  

� New sample ( , )c cyx  

Outputs: 

� Updated coefficients { , 1... 1}i i lθ = +  and bias b 

� Updated Matrix R 

� Updated partition of samples into sets S, E, and R 

AOSVR Incremental Algorithm: 

• Initialize 0cθ =  

• Compute ( )c i ic
i E S

f Q bθ
∈ ∪

= +∑x   

• Compute ( ) ( )c c ch f y= −x x   

• If ( )ch ε≤x , then assign cx to R, and terminate.  



 
• Let ( ( ))cq sign h= − x  be the sign that cθ∆ will take 

• Do until the new sample cx  meets the KKT condition 

o Update β,γ according to (19) and (21) 

o Start bookkeeping procedure: 

  Check the new sample cx , 

- 1 ( ( ) ) /c c cL h qε γ= − −x  (Case 1) 

- 2c cL qC θ= −   (Case 2) 

  Check each sample ix  in the set S (Case 3) 

- If 0iqβ >  and 0iC θ> ≥ , ( ) /S
i i iL C θ β= −   

- If 0iqβ >  and 0 i Cθ> ≥ − , /S
i i iL θ β= −  

- If 0iqβ <  and 0iC θ≥ > , /S
i i iL θ β= −  

- If 0iqβ <  and 0 i Cθ≥ > − , ( ) /S
i i iL C θ β= − −  

Check each sample ix  in the set E  (Case 4) 

- ( ( ) ( ) ) /E
i i i iL h sign qβ ε β= − −x  

Check each sample ix  in the set R  (Case 5) 

- ( ( ) ( ) ) /R
i i i iL h sign qβ ε β= − +x  

Set 1 2min( , , , , )S E R
c c cq L Lθ∆ = L L L ,  

   where { , }S S
iL i S= ∈L , { , }E E

iL i E= ∈L , and { , }R R
iL i R= ∈L . 

Let Flag be the case number that determines θ∆ . 

Let Ix  be the particular sample in T that determines cθ∆ . 

o End Bookkeeping Procedure. 



 
o Update cθ , b, and ,i i Sθ ∈  according to (18)  

o Update ( ),ih i E R∈ ∪x  according to (20) 

o Switch Flag 

            (Flag = 1): 

   Add new sample cx  to set S; update matrix R according to (25) 

            (Flag = 2): 

   Add new sample cx  to set E 

            (Flag = 3): 

   If 0Iθ = , move Ix  to set R; update R according to (24) 

   If I Cθ = , move Ix  to set E; update R according to (24) 

             (Flag = 4): 

    Move Ix  to set S; update R according to (25) 

             (Flag = 5): 

    Move Ix  to set S; update R according to (25) 

o End Switch Flag 

o If Flag ≤ 2, terminate; otherwise continue the Do-Loop. 

• Terminate incremental algorithm; ready for the next sample. 
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